Все о тюнинге авто

Создание органов на 3d принтере. Создан первый серийный биопринтер. Что подразумевается под словом “биопечать”

Первый биологический 3D-принтер, специально разработанный в расчёте на мелкосерийный, но всё же промышленный выпуск, открывает новые перспективы в области имплантации и восстановления органов и тканей. Таков результат сотрудничества американской компании Organovo и австралийской Invetech .

Вместо того чтобы пытаться вырастить в пробирке орган или кусочек ткани нужной формы и заданных свойств, куда эффективнее напечатать его на биопринтере, — полагают специалисты Organovo. В роли чернил такой аппарат использует запас культивированных клеток нужного типа (эпителиальные, соединительные, мышечные), а прецизионная печатающая головка под управлением компьютера выкладывает клетки (и вспомогательные вещества) в нужном порядке.

Собственно, первые впечатляющие опыты в данной сфере проводились ещё несколько лет назад. Над разными вариантами технологии печати органов и до сих пор работают исследователи сразу в нескольких институтах и университетах. Время от времени появляются трёхмерной биологической печати, отличающиеся нюансами в составе «чернил» и самом процессе формирования из них целой ткани.

Особенно преуспели на этой ниве профессор Габор Форгач (Gabor Forgacs) и сотрудники его лаборатории в университете Миссури, раскрывшие новые тонкости биопечати ещё в 2007 году. Мы подробно рассказывали о развитии данной технологии , её первых крупных успехах и собственно создании Organovo — её Форгач основал как раз для коммерциализации своих разработок.

В результате появилась технология NovoGen, в которой продуманы все необходимые детали биопечати как в биологической части, так и в части «железа». Первые экспериментальные принтеры для Organovo (и по её «эскизам») строила компания nScrypt . Но это были устройства, необходимые для шлифовки технологии. Теперь же настало время серийного выпуска биопринтеров.

Как сообщает Organovo в своём пресс-релизе , в мае 2009 года она выбрала в качестве промышленного партнёра компанию Invetech. Последняя обладает более чем 30-летним опытом в проектировании лабораторного и медицинского оборудования, в том числе — автоматизированного и компьютеризированного.

А в начале декабря первый экземпляр 3D-биопринтера, воплощающего в себе технологию NovoGen, был отправлен из Invetech в Organovo. Новинку отличают компактные размеры, интуитивно понятный компьютерный интерфейс, высокая степень интеграции узлов и высокая надёжность.

Новый принтер обладает такими скромными габаритами, что его можно спокойно поставить в биологический шкаф для обеспечения стерильной среды в процессе печати (фото Organovo).

Этот принтер обладает двумя печатающими головками. Одна заправляется целевыми «красками» (человеческие клетки печени, почек, стромальные клетки и так далее), вторая — вспомогательными материалами (поддерживающий гидрогель, коллаген, факторы роста).

Особая гордость австралийских инженеров — лазерная калибровочная система и роботизированная система позиционирования головок, точность которой составляет считанные микрометры. Это очень важно для размещения клеток в правильном положении.

Перед нами первый в мире именно серийный биопринтер, ведь уже в ближайшее время Invetech намерена поставить ещё несколько таких же аппаратов для Organovo, а она уже займётся распространением новинки в научном сообществе. Первые образцы 3D-биопринтера от Organovo и Invetech будут доступны для исследовательских и медицинских организаций в 2010 году.

UPD : Владельцы лаборатории - Инвитро - теперь есть на Хабре. Занёс в их корпоративный блог. С вопросами можно обращаться к ним напрямую.

Это из новой лаборатории 3D-печати органов. Спереди внушительный микроскоп, дальше видно двух медицинских инженеров за AutoCAD – делают макет площадки для формирования тканевых сфероидов.

Тут недавно открылась лаборатория 3D-биопринтинга органов (проект Инвитро). Вокруг неё творится какая-то лютая феерия непонимания того, что именно делается. В общем, хоть я и не микробиолог, но мне стало интересно. Я пробился до разработчика - В.А. Миронова. Именно он изобрёл технологию печати органов и запатентовал это в США, участвовал в разработке уже трех модификаций биопринтеров, и именно он «главный по науке» в новой лаборатории в Москве:


В.А. Миронов (M.D., Ph.D., профессор с 20-летним опытом в микробиологии, в частности, на границе с IT) - в процессе полуторачасового объяснения мне сути технологии изрисовал кучу бумаги.

В двух словах о печати он рассказать не смог, потому что сначала надо понять некоторую историю вопроса. Например, почему пришлось отбросить светлую идею растить эмбриона без головы в суррогатной матери, а затем вынимать из него почку и помещать её в биораставор для ускоренного созревания.

А пока главное. Не торопитесь пить всё что горит: до новой печени ещё очень далеко . Поехали.

Эволюция методов

Итак, сначала была генная терапия : пациенту вводились соответствующие комплексы. Выделялись определённые клетки, в них вводились нужные гены, затем клетки размещались в организме человека. Не хватало инсулина – вот ген, который продуцирует его создание. Берём клеточный комплекс, модифицируем, вкалываем пациенту. Идея – отличная, правда с одним коренным недостатком: пациент вылечивается сразу, и покупать после операции ничего не надо. То есть догадайтесь, кому это было поперёк горла. Дело шло сложно, а потом один из пациентов умер – и началась характерная для США волна судебных исков и запретов, в результате чего исследования пришлось свернуть. В итоге – метод есть, но толком не оттестирован.

Следующим трендом стала клеточная терапия - использование эмбриональных стволовых клеток. Метод отличный: берутся «универсальные» клетки, которые могут быть развиты до любых необходимых пациенту. Проблема в том, что чтобы их где-то получить, нужен эмбрион. Эмбрион в процессе получения клеток, очевидно, расходуется. А это уже морально-этическая проблема, которая вызвала запрет использования таких клеток.

Дальше - тканевая инженерия – это когда вы берёте основу, кладёте на неё клетки, засовываете всё это в биореактор, на выходе получаете результат (орган), который нужен пациенту. Как протез, только живой. Вот здесь важный момент: основное отличие от протеза в том, что протез изначально из неорганики, и вряд ли когда-нибудь встроится в организм «как родной». Деревянную ногу не почешешь.

Методы тканевой инженерии бывают каркасные – когда используется выщелоченный (обесклеченный) трупный орган, который затем «заселяется» клетками пациента. Другие научные группы пробовали работать со свиными белковыми каркасами органов (доноры-люди не нужны, зато во весь рост встаёт иммуносовместимость). Каркасы бывают искусственные – из разных материалов, некоторые научные группы экспериментировали даже с сахаром.

Сам Миронов практикует бескаркасную технологию (с использованием гидрогеля в качестве основы). В его методе основа-полимер быстро деградирует и в итоге остаётся только клеточный материал. Проще говоря, сначала вставляется каркас из неограники с размещёнными клетками, а затем каркас «растворяется», и его функции берут на себя сами клетки уже подросшего органа. Для каркасов используется тот же материал, что для хирургических швов: он легко и просто деградирует в организме человека.

Тут главный вопрос – почему нужна именно 3D-печать. Чтобы это понять, давайте закопаемся ещё чуть глубже в имеющиеся методы тканевой инженерии.

Приближаемся к цели

Вообще, идея вставлять в человека заранее выращенный органический орган – отличная. Посмотрим на три варианта развития технологии:
  1. Вы берёте каркас из неорганики, засеиваете его клетками – и получаете готовый орган . Метод грубый, но работающий. Именно про него речь в большинстве тех случаев, когда говорят «мы напечатали орган». Проблема в том, что где-то нужно взять «стройматериал» - сами клетки. А если они есть, то глупо использовать какой-то внешний каркас, когда есть возможность просто собрать орган из них. Но самая болезненная проблема – неполная эндотелизация. Например, для бронхов, сделанных так, уровень - около 70%. Это значит, что поверхностные сосуды тромбогенны – вылечивая пациента, вы сразу же привносите ему новую болезнь. Дальше он должен жить на гепарине или других препаратах, либо ждать, когда образуется тромб и эмболия. А здесь уже с нетерпением ждут юристы США, которые готовы отыграть по старому сценарию. И проблема эндотелизации пока не решена. Возможный вариант – выделение клеток-предшественников костного мозга с помощью мобилизации специальными препаратами и хомингом на органе, но это пока очень далёкая от практики фантазия.
  2. Второй метод крайне оригинален и очень радует своей циничностью . Берём клетку (фибробласт) пациента, добавляем 4 гена. Кладём полученную клетку в бластоцисту (зародыша животного) и начинаем выращивать зверушку. Получается, например, свинья с человеческой поджелудочной железой – так называемая химера. Орган полностью «родной», только вся инфраструктура вокруг – кровеносные сосуды, ткани и так далее – от свиньи. А они будут отторгаться. Но ничего. Мы берём свинью, вырезаем нужный орган (свинья при этом полностью расходуется), а затем убираем с помощью специальной обработки все свиные ткани – получается как бы органический каркас органа, который можно использовать для выращивания нового. Некоторые исследователи пошли дальше и предложили следующий лафхак: давайте заменим свинью на суррогатную мать. Тут как: кроме 4 генов в клетку добавляется ещё один, отвечающий за ацефалию (отсутствие головы). Нанимается суррогатная мать, которая вынашивает нашего общего друга-эмбриона. Он развивается без головы, у ацефалов это хорошо получается. Затем – УЗИ, выяснение, что ребёнок получается неполноценный, и юридически-разрешённый аборт. Нет головы – нет человека, значит, никого мы не убивали. И тут – раз! - у нас тут появился теоретически легальный биоматериал с неразвитым органами пациента. Быстро имплантируем их! Из очевидных минусов – ну, кроме моральной стороны – организационная сложность и возможные юридические осложнения в будущем.
  3. И, наконец, есть третий метод, про который и идёт речь . Он же самый современный - трёхмерная печать органов. И именно им занимаются в новой лаборатории. Смысл такой: не нужны неорганические каркасы (клетки сами себя прекрасно держат), не нужно у кого-то брать органы. Пациент отдаёт немного своей жировой ткани (есть у каждого, в ходе экспериментов жаловались только тощие японцы), из неё методом последовательной обработки клеток получаются необходимые конструкционные элементы. Создаётся трёхмерная модель органа, конвертируется в CAD-файл, затем этот отдаётся 3D-принтеру, который умеет печатать нашими клетками и понимает в какую точку трехмерного пространства ему нужно «уложить» конкретный тип клетки. На выходе – тканевый конструкт, который надо поместить в специальную среду, пока не начались проблемы с гипоксией. В биорекаторе тканевый конструкт «созревает». Потом орган можно «трансплантировать» пациенту.
Очевидные сложные места метода следующие:
  1. Получение модели органа. Нужно где-то взять схему. Это довольно просто.
  2. Получение самих клеток. Очевидно, нам нужен материал для печати органа.
  3. Сборка принтера, чтобы клетками можно было печатать (куча проблем с образованием структуры органа).
  4. Гипоксия (отсутствие кислорода) во время создания органа.
  5. Реализации питания органа и его созревание до готовности.
Итак, 3D-принтер – это только кусок линии по фабрикации органов: его нужно обеспечить чертежом, материалом, а затем полученную модель органа из клеток ещё вырастить. Теперь давайте посмотрим по шагам, как все описанные выше задачи решаются.

Модель органа

Итак, берётся CAD-файл (сейчас - формат stl) с моделью органа. Проще всего получить модель, сделав трёхмерное сканирование самого пациента, а затем доработав данные руками. Сейчас текущие конструкты моделируются в AutoCAD.


Видно моделирование. 3D-структура как у обычной детали – только вместо пластика будут тканевые сфероиды.

Материал

Берётся материал – тканевые сфероиды, которыми будет идти запечатка. В качестве основы используется гидрогель, выполняющий функции соединительной структуры. Затем 3D-принтер печатает орган из этих вот тканевых сфероидов.


Первый опыт, подтверждающий, что из кусочков можно собрать целый орган: учёные разрезали на фрагменты сердце цыплёнка и срастили заново. Успешно.

Теперь вопрос – где взять клетки для этого материала. Лучшие – человеческие эмбиональные стволовые, из них можно сделать клетки для любой ткани последовательной дифференцировкой. Но их трогать, как мы знаем, нельзя. Зато можно брать iPS – индуцированные плюрипотентные стволовые клетки. Их можно сделать из костного мозга, пульпы зуба или обычной жировой ткани пациента – и их производят различные компании по всему миру.

Схема такая: человек обращается в клинику, делает липосакцию, жировая ткань замораживается и кладётся в репозиторий. При необходимости – достаётся, из неё делаются нужные клетки (ATDSC, один такой комплекс есть в России) и затем дифференцируются по назначению. Например, из фибробластов можно сделать iPS, из них – почечный эпителий, а дальше – функциональный эпителий.

Машины для автоматического получения таких клеток производятся General Electric, например.


Центрифуга. Первый этап отделения материала из жировой ткани.

Из этих клеток формируются шарики в специальных микроуглублениях на твёрдом материале. В углубление на молде помещается клеточная суспензия, затем клетки сращиваются, и образуется шарик. Точнее – не очень ровный сфероид.

Обработка конструкционных блоков

Следующая проблема – клетки в картдидже горят желанием срастись. Тканевые сфероиды должны быть изолированы друг от друга, иначе они начнут срастаться раньше срока. Их нужно инкапсулировать, и для этого используется гиалуроновая кислота, получаемая из сыворотки крови. Её надо совсем мало – просто один тончайший слой. Она также быстро «уходит» после печати.

Печать

Головка 3D-принтера имеет три экструдера: две форсунки с гелем и устройство, выдающее тканевые сфероиды. В первой форсунке с гелем – тромбин, во второй – фибриноген. Оба геля относительно стабильны, пока не соприкасаются. Но когда белок фибриноген расщепляется тромбином, образуется фибрин-мономер. Именно им как бетоном скрепляются тканевые сфероиды. При глубине слоя, соответствующей диаметру сфероида, можно последовательно наносить материал ряд за рядом – сделали слой, закрепили, перешли к следующему. Затем фибрин легко деградирует в среде и вымывается при перфузии, и остаётся только нужная ткань.


Вот так будут печататься трубочки

Принтер печатает слоями по 250 микрометров: это баланс между оптимальным размером блока и риском гипоксии в сфероиде. За полчаса можно напечатать тканево-инженерную конструкцию 10х10 сантиметров – но это ещё не орган, а тканево-инженерная конструкция, «сопля» на жаргоне. Чтобы конструкция стала органом, она должна жить, иметь чёткую форму, нести функции.


Микроскоп с огромным фокусным расстоянием смотрит на стеклянный куб с 3D-принтером.


Печатающая головка. Пока идут тесты комплекса на пластике. Принтер сейчас печатает расходный материал, пластиковые приспособления-молды для создания сфероидов. Параллельно идут тесты стерильного бокса для 3D-принтера при работающем электронном устройстве.

Постобработка

Главный вопрос – это то, что клеткам, вообще-то, не плохо бы иметь доступ к кислороду и питательным веществам . Иначе они начинают, грубо говоря, гнить. Когда орган тонкий, проблем нет, но уже с пары миллиметров это важно. Правда, у слона, например, есть хрящи до 5 миллиметров – но они вмонтированы там, где создаётся большое давление из-за массы остального слона. Так вот, чтобы напечатанный орган не испортился в процессе фабрикации, нужна микроциркуляция. Это делается печатью настоящих сосудов и капилляров, плюс с помощью тончайших перфузионных отверстий, проделываемых неорганическими инструментами (грубо говоря, конструкционные блоки поступают на полимерном «шампуре», который потом вынимается).


Уплотнение ткани


Тканевое объединение нескольких типов клеток без смешения

Будущий орган помещается в биореактор. Это, сильно упрощая, банка с контролируемой средой, в которой на входы и выходы органа подаются нужные вещества, плюс обеспечивается ускоренное созревание за счёт воздействия факторами роста.

Вот что интересно - архитектура органа обычно похожа на привычный по ООП инкапсулированный объект – артерия входа, вена выхода – и куча функций внутри. Предполагается, что биореактор позволит обеспечивать нужный вход и выход. Но это пока теория, собрать ещё не удалось ни одного. Но проект отработан до стадии «можно собирать прототип».


Висело в лаборатории. Видно первый этап: получение базовых элементов, второй – 3D-принтер с тремя экструдерами, третий – уход от прототипа к промышленной модели, затем испытания на животных, затем выход на IPO и установка людям.


Линия целиком - клеточный сортер, фабрикатор тканевых сфероидов, принтер, перфузионная установка

Рынки

Теперь кому всё это нужно на стадии, пока нет самих органов.

Первые же крупные клиенты – военные . Собственно, как не трудно догадаться, DARPA ходит в гости ко всем учёным, занимающимся такой темой. У них два применения – испытательное (много что нельзя испытывать на живых людях, а хочется – отдельный орган был бы очень кстати) и лечебное. Например, бойцу демократии отрывает руку, а до госпиталя ползти сутки. Хорошо бы закрыть дыру, снять боль, дать ему возможность стрелять ещё 5 часов, а затем на своих двоих прийти к медсестре. В теории возможны либо роботы, которые соберут всё это по месту, либо заплатки из человеческих тканей, которые уже сейчас всерьёз думают ставить на ожоги.

Второй клиент – фарма . Там лекарства испытываются по 15 лет до выхода на рынок. Как шутят американцы, проще убить коллегу, чем мышку. На мышку надо собрать кучу документов в руку толщиной. Сертифицированные мышки получаются в результате очень дорогие. Да и результаты по зверьку отличаются от человеческих. Существующие модели испытаний на плоских клеточных моделях и на животных не достаточно ревалентны. В лаборатории мне сказали, что примерно 7% новых лекарственных формул в мире не доходят до клинических испытаний из-за нефротоксичности, выявленной на стадии преклинических испытаний. Из тех, что дошли, около трети имеют проблемы с токсичностью. Именно поэтому, кстати, одна из первых задач - проверка функциональности нефронов, сделанных в лаборатории. Ткани и органы с принтера будут существенно ускорять разработку лекарств, а это огромные деньги.

Третий клиент – госпитали. Рынок трансплантации почек с США, например – 25 миллиардов долларов. Сначала предполагается просто продавать 3D-принтеры в больницы, чтобы пациент мог получить что нужно. Следующий (теоретический) шаг – создание комплексов для печати органов прямо внутри пациента. Дело в том, что миниатюрную печатающую головку внутрь больного доставить часто намного проще, чем крупный орган. Но это ещё пока мечты, хотя нужные роботы существуют.


Вот примерно так оно должно работать

Да, здесь есть ещё одна важная тема: параллельно ведутся исследования по управлению тканевыми сфероидами за счёт магнитной левитации. Первые опыты были простые – в ткань засовывались железные «наноопилки», и сфероиды действительно летали как надо в магнином поле и доставлялись по месту. Но страдала дифференцировка. С опилками сложно выполнять нужные функции. Следующий логичный шаг – металл в инкапсулирующем слое. Но ещё круче – микроскафолды с магнитными частицами. Эти скафолды охватывают сфероид и ещё могут выступать в роли каркаса-соединителя, встающего сразу по месту, что даёт огромный простор для оперативной печати органов.

Совсем недавно в британском журнале The Economist была опубликована захватывающая статья про биопринтер, который будет использоваться для печати человеческих органов!

Хирурги, которые занимаются пересадкой человеческих органов, надеются, что однажды они смогут по первому запросу получить все необходимые для пересадки органы. Сейчас пациент может провести несколько месяцев, а возможно и лет, в ожидании органа от подходящего пациента. На протяжении этого времени его состояние может ухудшиться. Он может даже умереть. Благодаря искусственным органам, можно было бы не только облегчить страдания пациентов, но и сохранить человеческие жизни. Теперь, с появлением первого коммерческого 3D биопринтера, эта возможность может стать реальностью.

Создание биопринтера

Принтер стоимостью 200.000$ был разработан в результате сотрудничества двух компаний: Organovo, которая находится в Сан Диего и специализируется на регенеративной медицине, и машиностроительной Invetech, расположенной в Мельбурне. Один из основателей Organovo, Габор Форжак, разработал прототип, на котором основан новый 3D принтер. Первые рабочие образцы принтера скоро будут доставлены исследовательским группам, которые, как и доктор Форжак, изучают способы создания искусственных тканей и органов. В настоящее время большая часть этой работы выполняется вручную, при помощи существующих устройств.

По словам Кейта Мерфи, директора Organovo, вначале будут создаваться только простые ткани, такие как кожа, мышцы и небольшие участки кровеносных сосудов. Однако, сразу после окончания испытания тестовых образцов, начнется производство кровеносных сосудов для операций, когда необходимо «прокладывать» новые сосуды для движения крови чтобы обойти поврежденные. После дальнейших исследований, можно будет производить более сложные органы. Поскольку машины способны печатать сети разветвленных сосудов, можно было бы, например, создавать сети кровеносных сосудов, необходимых для снабжения кровью таких искусственно произведенных органов как печень, почки, сердце.

История развития биопечати

3D биопринтер, произведенный компанией Organovo, использует тот же принцип действия что и «обычные» 3D принтеры. 3D принтеры работают аналогично с обычными струйными принтерами, но печатают модель в трехмерном виде. Такие принтеры распыляют капельки полимера, которые сплавляются вместе, после чего образуют единую структуру. Таким образом, за каждый проход печатающая головка создает маленькую полимерную линию на объекте. В результате, шаг за шагом, предмет обретает свою окончательную форму. Полости в сложном объекте поддерживаются при помощи «подмостков» из специальных растворимых в воде материалов. Эти подмостки вымываются после того как объект будет полностью закончен.

Исследователи обнаружили, что аналогичный подход можно применить и к биологическим материалам! Если расположить крошечные участки клеток рядом друг с другом, они начинают как бы «сплавляться» вместе. В настоящее время исследуется ряд технологий, который бы позволил создавать человеческие органы из отдельных клеток, например, технология «накачивания» мышечных клеток при использовании маленьких машин.

Несмотря на то, что индустрия печати человеческих органов только зарождается, ученые уже могут похвастать успешными примерами создания человеческих органов «с нуля». Так, в 2006 году Энтони Атала, вместе со своими коллегами из Wake Forest Institute for Regenerative Medicine в Северной Каролине, США, создали для семерых пациентов мочевые пузыри. Все они до сих пор функционируют.

Процесс создания мочевого пузыря происходил следующим образом. Вначале доктор брал крошечный образец ткани мочевого пузыря пациента (чтобы предотвратить отторжение новосозданного органа иммунной системой). Затем полученные клетки наносились на биологический мочевой пузырь, который представлял собой поддерживающую основу, имеющую форму мочевого пузыря нагретую до температуры человеческого тела. Нанесенные клетки начинали расти и делиться. После 6-8 недель мочевой пузырь был готов для имплантации пациенту.

Преимущество использования биопринтера состоит в том, что для его работы не нужна поддерживающая основа («подмостки»). Машина Organovo использует стволовые клетки, полученные из костного мозга. Из стволовых клеток можно получить любые другие клетки, используя различные факторы роста. 10-30 тысяч таких клеток формируются в маленькие капельки диаметром 100-500 микрон. Такие капельки хорошо сохраняют свою форму и прекрасно подходят для печати.

Итак, первая печатающая головка фактически выкладывает капельки с клетками в нужном порядке. Вторая головка используется для распыления поддерживающего основания - гидрогеля на сахарной основе, который не взаимодействует и не прилипает к клеткам. Как только печать закончена, полученную структуру оставляют на один-два дня для того чтобы капли «сплавились» друг с другом. Для создания трубчатых структур, таких как кровяные сосуды, вначале наносится гидрогель (внутри и снаружи будущей структуры). После этого добавляются клетки. Как только сформируется орган, гидрогель снимается с наружной части (как кожура апельсина) и вытягивается из внутренней части, как кусочек веревки.

В биопринтерах можно использовать и другие виды клеток и поддерживающих оснований. Так, по словам господина Мерфи, клетки печени можно наносить на заранее сформированное основание, имеющее форму печени или можно формировать слои из соединительной ткани для создания зуба. При этом новый принтер обладает такими скромными габаритами, что его можно спокойно поставить в биологический шкаф для обеспечения стерильной среды в процессе печати.

Некоторые исследователи полагают, что такие машины как эта, когда-нибудь смогут печатать ткани и органы прямо в человеческом теле! И, на самом деле, доктор Атала сейчас работает над принтером, который, после сканирования участка тела, где необходима пересадка кожи, сможет напечатать кожу прямо на человеческом теле! Относительно органов большего размера, доктор Форжак считает, что они могут принимать различные формы, по крайней мере, вначале. Например, для того чтобы очищать кровь, искусственная почка не обязательно должна выглядеть как реальная почка или функционально полностью повторять ее. Те люди, которые ждут органов, наверняка не будут сильно переживать из-за того, как будут выглядеть новые органы. Главное - чтобы они работали, а люди чувствовали себя лучше.

Когда-то это было научной фантастикой, а уже сегодня это научный факт - 3D печать человеческих органов применяется в медицине.

На первый взгляд сама идея производства органов «на заказ» с помощью 3д печати кажется сюжетом для фантастического фильма. Тем не менее, техника, способная создавать живые человеческие ткани, замещать жизненно важные органы и быстро залечивать открытые раны - это намного более реально, чем вы можете себе представить.

3D печатные органы уже используются в качестве учебных пособий для будущих хирургов, чтобы отточить их навыки перед столкновением с реальными чрезвычайными ситуациями в жизни. Также успешно пересаживают 3D печатные замены кости, но печать живых тканей станет следующим шагом в развитии этой новаторской технологии.

Процесс

Как и в любой другой 3D печати, объект печатается слой за слоем, но в отличие от 3д технологий PLA или ABS , для создания живой ткани используются живые клетки, которые находятся в гелеобразной массе. После этого клетки растут и развиваются, превращаясь в живую ткань, кости и даже целые органы. Перспективы того, что эта технология может сделать для человечества, поистине огромны. В мире острая нехватка донорских органов, и биопечать 3D могла бы стать решением этой проблемы.

Ранние разработки

Хотя технология 3Д биопечати пока еще не готова для использования в коммерческих целях, ее применение уже сейчас приносит умопомрачительные результаты.

С помощью 3д принтера RepRap группа биоинженеров из Университета Пенсильвании создала работающие кровеносные сосуды. Биоинженеры всего мира уверенно движутся к тому, что напечатать органы можно будет из клеток пациента, но на этом тернистом и сложном пути все еще достаточно трудностей и проблем, которые только предстоит преодолеть. Ключевая проблема, которая стоит перед биоинженерами - создание системы кровеносных сосудов, которая могла бы обеспечивать обмен питательными вещества и удалять отходы из внутренних клеток ткани. Поскольку возможности создать такие кровеносные сосуды нет, внутренние клетки быстро задохнутся и умрут. Но команда из Пенсильвании предложила удивительное решение проблемы.

Биоинженеры из Университета Пенсильвании попытались решить эту проблему, использовав 3D -принтер под названием RepRap для печати сети кровеносных сосудов из сахара. После того как в группу клеток внедрена специальная сеть кровеносных сосудов, сахар просто растворяется, при этом работающая сосудистая сеть остается.

Ученый-биоинженер Джордан Миллер говорит, что идея пришла ему в голову во время посещения выставки. "Впервые такая мысль посетила меня, когда я был на выставке Body Worlds (Мир тела), где можно увидеть отдельные пластиковые формы и слепки органов сердечно-сосудистой системы".

Когда сахар затвердевает, в пресс-форму добавляется гелеобразная масса с клетками печени. Этот гель покрывает и обволакивает кровеносные сосуды. Как только гель затвердевает, его можно извлечь из формы. Форма из сахара остается внутри до тех пор, пока гель не смывается водой, сахар при этом растворяется полностью. Жидкий сахар вытекает по тем же кровеносным сосудам, которые были созданы с его помощью, при этом какой-либо вред клеткам не наносится.

"С точки зрения работы с клетками эта новая технология делает образование тканей простым и легким делом", - говорит Кристофер Чен, профессор по инновациям на Факультете биоинженерии.

Прорыв

Хирург Энтони Атала - директор института регенеративной медицины Wake Forest , он и его команда сделали значительный шаг вперед в 3Д печати органов. Используя живые клетки, Атала работает над 3D -печатью почек для трансплантации. И хотя все еще находится на ранней стадии, команда Атала уже достигла значительного прогресса на пути к решению одной из самых больших проблем, стоящих перед трансплантацией - нехваткой донорских почек во всем мире.

Более 10 лет назад Атала успешно трансплантировал искусственный мочевой пузырь своему пациенту Люку Масселла, поэтому ему, как мало кому другому известно, как эта технология может изменить жизнь.

Энтони Атала задается вопросом: "Можем ли мы выращивать органы, вместо того, чтобы заниматься их трансплантацией?». Его лаборатория в институте регенеративной медицины Wake Forest именно этим и занимается - создает более 30 тканей и целых органов.

Практическое применение

Помимо трансплантации органов, 3D печать может быть использована в различных сферах медицины. Это поможет не только производить донорские органы, но также обеспечить лучшее заживление и выздоровление пациентов, и лучшее медицинское образование для уже работающих специалистов и студентов. Некоторые практические примеры того, где можно применять такие технологии:

1. Органы

Наиболее очевидное использование 3D печатных органов: пересадка. Невозможно переоценить способность создавать новые органы непосредственно из собственных клеток пациента. Это может спасти десятки тысяч жизней каждый год.

2. Поддержка скелета

Изготовление сложных и подробных объектов - одна из сильных сторон 3D печати, поэтому 3D -принтеры уже используются для создания биоразлагаемых структур для поддержки скелета, чтобы помогает и облегчает исцеление больного и рост тканей.

3. Замена костей

В сочетании с 3D - сканированием, 3D -принтеры могут создавать кость, например, бедренную, что идеально подходит для тех, кто нуждается в новой костной ткани. Создание замены костей специально подобранных для каждого пациента в значительной мере снижает дискомфорт для пациента и улучшает подвижность после пересадки.

4. Практика операций

Всякий раз, когда вы посещаете врача, вы хотите знать, что в ы в опытных руках. Никто не хочет быть стать первым, кого оперирует этот врач. С 3D печатными органами будущие хирурги могли бы выполнять десятки или даже сотни операций до того, как сделают эту же операцию реальному человеку. Возможность хирургов получить лучшую практику означает, что на проведение операции в результате понадобиться меньше времени, а выздоровление пройдет быстрее.

5 . Тестирование медицинских препаратов

Никому не нравится идея тестирования лекарств, будь то на животных или на людях. Но опять же, все мы хотим знать, что наши лекарства проверены и безопасны. С распространением 3D биопечати на напечатанных органах и тканях можно было бы проверить наличие побочных эффектов или негативных реакций на данный препарат в развитии. Если вы видите на бутылке или пакете с лекарством описание побочного действия от препарата, то это значит, что кто-то уже перенес это побочное действие при тестировании и изучении препарата. С 3D печатью мы навсегда забудем о тестировании медикаментов на людях и животных. Это также будет способствовать непрерывному развитию медицины.

Ведущие исследователи

Один из основных разработчиков 3д печати органов - компания Organovo из Сан-Диего. Их сайт гласит:

"В Organovo мы проектируем и создаем полностью функциональные человеческие ткани, используя наши собственные трехмерные технологии биопечати. Наша цель заключается в создании живых человеческих тканей, которые будут функционировать как природные ткани человека. С 3D тканями, которые точно соответствуют биологии человека, мы делаем возможным использование инновационных методов лечения:

В сотрудничестве с биофармацевтическими компаниями и научными медицинскими центрами мы проектируем, создаем и тестируем искусственно созданные ткани для моделирования заболевания и изучения токсикологии.

Мы даем исследователям то, чего раньше у них никогда не было: это возможность тестировать лекарства на функциональных человеческих тканях еще до введения препарата живому человеку; это поможет преодолеть существующую пропасть между доклиническими и клинических испытаниями.

Мы создаем функциональные, трехмерные ткани, которые могут быть имплантированы в организм человека для лечения или замены поврежденных или больных тканей".

Недавно компания была зарегистрирована на Нью- Йоркской фондовой бирже. Organovo уже доказала коммерческую ценность этой очень новой области деятельнсти, которая, несомненно, в будущем будет расти и развиваться.

Хотя персональные 3D-принтер не отстают и по мнению экспертов могут кардинально повлиять на область медицины.

Биопечать – одно из самых революционных направлений 3D печати. От того, как будет развиваться эта технология, зависит будущее медицины.

Что подразумевается под словом “биопечать”?

Сегодня активно разрабатываются 3D принтеры для печати пищевых продуктов – шоколада, сахара, желе и т. д. Параллельно развивается другое направление – ученые пытаются выращивать мясо или клетчатку на основе водорослей в лабораторных условиях. Биопечать находится где-то посередине между этими подходами – между генетикой и 3D печатью.

3D технологии уже сегодня повлияли на разработку медицинских имплантов. Сегодня врачи рассчитывают трансплантанты, которые идеально подходят пациенту, путем 3D сканирования поврежденного участка, формирования 3D модели, и распечатки на 3D принтере.

Но и медицина, со своей стороны, также повлияла на молодую индустрию 3D печати: создаются новые материалы для принтеров – с гипоаллергенностью, высокой биосовместимостью и низкой отторгаемостью. Как правило, это керамика или специальный биосовместимый пластик.

Печать органов

Органы бывают разные – какие-то печатать проще, какие-то сложнее. Начнем с более простых процессов и перейдем к сложным:

  1. Плоские структуры, как правило с одним или двумя типами клеток, то есть создание кожи человека для пересадки на место поврежденных участков, например обожженных;
  2. Трубчатые структуры, в основном с двумя типами клеток, для создания кровеносных сосудов;
  3. Полые органы. Сложности возникают в желудке или мочевом пузыре, при выполнении ими сложных функций и взаимодействии с другими органами.
  4. Функциональные органы, состоящие из множества видов клеток, сложно взаимодействующих между собой. Прежде всего, это сердце, печень и почки.

Регенеративная медицина уже доказала, что может успешно имплантировать выращенные в лаборатории версии первых трех типов органов. Исследователи надеются, что по мере развития индустрии 3D-печати органы для пересадки можно будет перевести ан массовое производство.

На сегодняшний день имплантировались выращенные в лабораториях кожа, мочевые пузыри и трахеи – эти части тел медленно выращивали за счет сочетания искусственных опор и живых человеческих клеток. 3D-технологии печати предлагают большую скорость и компьютерную точность в формировании слоя живых клеток.

Создание на 3D принтере сложных органов пока что остается фантастикой. Напечатать сердце или печень из клеток пациента еще никому не удалось, хотя первые осторожные шаги уже сделаны: 3D технологии используются для создания крошечных кусков органов.

Как печатаются органы

Для выращивания органов создаются искусственные опоры. По форме они идентичны самому органу. На их поверхность производится посев живых клеток.

С помощью этого метода вырастили искусственные мочевые пузыри для первых имплантаций пациентам в 1999 году. Прошло более 10 лет, 3D принтеры стали совершеннее, и теперь они могут печатать как искусственные опоры, таки и живые клетки одновременно.

Некоторые лаборатории прогнозируют, что в скором времени можно будет обходиться без искусственных опор, используя тенденцию живых клеток к «самоорганизации». Опорный материал в конечном итоге будет просто растворяться (для чего может использоваться гидрогель – вязкий водный состав), не влияя на живые клетки, но оставляя исходную структуру ткани в заданном положении. При этом проблемой является прочность и целостность созданной структуры.

Ученые из Organovo экспериментируют с созданием крошечных кусочков печени, которые должны стать «строительными блоками». 3D-принтеры компании уже могут располагать блоки послойно, что позволяет живым клеткам расти вместе. Стволовые клетки пациента могут обеспечить материал для 3D-печати органа, который организм не станет отвергать.

Существующие проблемы

Возможность печати полноразмерных функционирующих органов зависит от того, удастся ли ученым создавать полноценные кровеносные сосуды. Сосуды будут поставлять органам богатую питательными веществами и кислородом кровь, что позволит сохранить ткань здоровой. До сих пор ни в одной лаборатории не удалось создать 3D-печатные органы с сетью кровеносных сосудов.

Компания Organovo экспериментирует с 3D печатью кровеносных сосудов 1 мм или больше в диаметре. Им удалось построить ткани, содержащие крошечные кровеносные сосуды размером 50 микрон. Этого достаточно, чтобы поддерживать фрагмент органа миллиметровой толщины.

Даже лучшие 3D принтеры не могут создавать системы мельчайшего масштаба для строительства кровеносных сосудов и органов. Многие исследователи считают, что решение заключается в изучении тенденции к самоорганизации живых клеток. Это позволит печать ткани в десятки или сотни микрон, а затем клетки будут самостоятельно развиваться и правильно организовываться.

Перспективы биопечати

Итак, что такое биопечать? Это индустрия, которая в будущем будет спасать жизни миллионов, создавая импланты и органы «по заказу». По прогнозам исследователей, это произойдет через 10-15 лет.

В настоящее время создаются крошечные фрагменты сердца, печени и почек. Они используются для тестирования всевозможных лекарств или влияния заболеваний и отравляющих веществ на ткани.