Все о тюнинге авто

Как сделать измеритель частоты. Простой цифровой частотомер Цифровой частотомер своими руками схема

На базе только одной микросхемы К155ЛАЗ, используя все ее логические элементы 2И-НЕ, можно построить сравнительно простой прибор, способный измерять частоту переменного напряжения примерно от 20 Гц до 20 кГц. Входным элементом такого измерительного прибора колебаний звуковой частоты служит триггер Шмитта - устройство, преобразующее подаваемое на его вход переменное напряжение синусоидальной формы в электрические импульсы такой же частоты. Без такого преобразования аналогового сигнала логические элементы работать не будут, причем триггер Шмитта "срабатывает" при определенной амплитуде входного сигнала. Если она меньше порогового значения, импульсного сигнала на выходе триггера не будет.

Начнем с опыта.

Триггер Шмитта. Пользуясь схемой, показанной на рис. 23, а, смонтируйте на макетной панели микросхему К155ЛАЗ, включив в работу только два ее логических элемента. Здесь же, на панели, разместите батареи GB1 и GB2, составленные из четырех гальванических элементов 332 или 316, и переменный резистор R1 сопротивлением 1,5 или 2,2 кОм (желательно с функциональной характеристикой А - линейной). Выводы батарей подключайте к резистору только на время опытов.

Включите питание микросхемы и по вольтметру постоянного тока установите движок переменного резистора в такое положение, при котором на левом, по схеме, выводе резистора R2, являющемся входом триггера Шмитта, будет нулевое напряжение. При этом элемент DD1.1 окажется в единичном состоянии - на его выходном выводе 3 будет напряжение высокого уровня, а элемент DD1.2 - в нулевом. Таково исходное состояние элементов этого триггера.

Рис. 23. Опытный триггер Шмитта и графики, иллюстрирующие его работу

Теперь вольтметр постоянного тока подключите к выходу элемента DD1.2 и, внимательно наблюдая за его стрелкой, начинайте плавно перемещать движок переменного резистора в сторону верхнего, по схеме, вывода, а затем, не останавливаясь, в обратную сторону - до нижнего вывода, далее - до верхнего и т. д. Что при этом фиксирует вольтметр? Периодическое переключение элемента DD1.2 из нулевого состояния в единичное, т. е., иначе говоря, появление на выходе триггера импульсов положительной полярности.

Взгляните на графики б и в на том же рис. 23, которые иллюстрируют работу триггера. Перемещением движка переменного резистора из одного крайнего положения в другое вы имитировали подачу на вход опытного устройства переменного напряжения синусоидальной формы (рис. 23.б) амплитудой до 3 В. Пока напряжение положительной полуволны этого сигнала было меньше порогового (U пор.1), устройство сохраняло исходное состояние. При достижении же порогового напряжения, равного примерно 1,7 В (в момент t 1), оба элемента переключились в противоположные состояния и на выходе триггера (вывод 6 элемента DD1.2) появилось напряжение высокого уровня. Дальнейшее повышение положительного напряжения на входе не изменило этого состояния элементов триггера. А вот при перемещении движка в обратную сторону, когда напряжение на входе триггера снизилось примерно до 0,5 В (момент t 2), оба элемента переключились в первоначальное состояние. На выходе триггера вновь появился высокий уровень напряжения.

Отрицательная полуволна не изменила этого состояния элементов, образующих триггер Шмитта, поскольку оказалась замкнутой на общий проводник источника питания через внутренние диоды входной цепи элемента DD1.1.

При следующей положительной полуволне входного переменного напряжения на выходе триггера сформируется второй импульс положительной полярности (моменты t 3 и t 4). Повторите этот опыт несколько раз и по показаниям вольтметров, подключенных ко входу и выходу триггера, постройте графики, характеризующие его работу. Они должны получиться такими же, как и те, что на графиках рис. 23. Два разных по уровню порога срабатывания элементов - наиболее характерная особенность триггера Шмитта.

Принципиальная схема предлагаемого для повторения частотомера приведена на рис. 24. Логические, элементы DD1.1, DD1.2 и резисторы R1-R3 образуют триггер Шмитта, а два других элемента той же микросхемы - формирователь его выходных импульсов, от частоты следования которых зависят показания микроамперметра РА1. Без формирователя прибор не даст достоверных результатов измерения, потому что длительность импульсов на выходе триггера зависит от частоты входного измеряемого переменного напряжения.

Конденсатор С1 - разделительный. Пропуская широкую полосу колебаний звуковой частоты, он преграждает путь постоянной составляющей источника сигнала. Диод VD2 замыкает на общий провод цепи питания отрицательные полуволны напряжения (в принципе этого диода может и не быть, поскольку его функцию способны выполнять внутренние диоды на входе элемента DD1.1), диод VD1 ограничивает амплитуду положительных полуволн, поступивших на входы первого элемента, на уровне напряжения источника питания.

Рис. 24. Принципиальная схема простейшего частотомера

С выхода триггера (вывод 6 элемента DD1.2) импульсы положительной полярности поступают на вход формирователя. Работает формирователь так. Элемент DD1.3 включен инвертором, а DD1.4 используется по своему прямому назначению-как логический элемент 2И-НЕ. Как только на входе формирователя (выводы 9, 10 элемента DD1.3) появляется напряжение низкого уровня, элемент DD1.3 переключается в единичное состояние и через него и резистор R4 заряжается один из конденсаторов С2-С4. По мере зарядки конденсатора положительное напряжение на выводе 13 элемента DD1.4 повышается до высокого уровня. Но этот элемент остается в единичном состоянии, так как на втором его входном выводе 12, как и на выходе триггера Шмитта, низкий уровень напряжения. В таком режиме через микроамперметр протекает незначительный ток. Как только на выходе триггера Шмитта появляется напряжение высокого уровня, элемент DD1.4 переключается в нулевое состояние и через микроампер-метр начинает протекать значительный ток. Одновременно элемент DD1.3 переключается в нулевое состояние, и конденсатор формирователя начинает разряжаться. Когда напряжение на нем снизится до порогового, элемент DD1.4 вновь переключится в единичное состояние. Таким образом, на выходе формирователя появляется импульс отрицательной полярности (см. рис. 23,г), в течение которого через микроамперметр протекает ток, значительно больший, чем начальный. Угол отклонения стрелки, микроамперметра пропорционален частоте следования импульсов: чем она больше, тем на больший угол отклоняется стрелка.

Длительность импульсов на выходе формирователя определяется продолжительностью разрядки включенного времязадающего конденсатора (С2, СЗ или С4) до напряжения срабатывания элемента DD1.4. Чем меньше его емкость, тем короче импульс, тем большую частоту входного сигнала можно измерить. Так, с времязадающнм конденсатором С2 емкостью 0,2 мкФ прибор способен измерять частоту колебаний ориентировочно от 20 до 200 Гц, с конденсатором СЗ емкостью 0,02 мкФ - от 200 до 2000 Гц, с конденсатором С4 емкостью 2000 пФ - от 2 до 20 кГц. Подстроечными резисторами R5 - R7 стрелку микроамперметра устанавливают на конечную отметку шкалы, соответствующую наибольшей измеряемой частоте соответствующего поддиапазона. Минимальный уровень переменного напряжения, частоту которого можно измерить, около 1,5В.

Еще раз проанализируйте графики на рис. 23, чтобы закрепить в памяти принцип работы частотомера, а затем дополните опытный триггер Шмитта деталями входной цепи и формирователя и испытайте устройство в действии на макетной панели. На это время переключатель поддиапазонов не нужен, времязадающий конденсатор, например С2, можно подключить непосредственно к выводу 13 элемента DD1.4, а в цепь микроамперметра включить один из подстроечных резисторов или постоянный резистор сопротивлением 2,2...3,3 кОм. Микроамперметр РА1 на ток полного отклонения стрелки 100 мкА такой же, как в сетевом блоке питания.

Налаживание. Закончив монтаж, включите источник питания и подайте на входные выводы 1, 2 первого элемента триггера Шмитта импульсы положительной полярности. Их источником может быть описанный выше генератор испытательных импульсов или другой аналогичный генератор. Частоту следования импульсов установите минимальную. При этом стрелка микроамперметра должна резко отклоняться на некоторый угол и возвращаться к нулевой отметке шкалы, что будет свидетельствовать о работоспособности частотомера. Если же микроамперметр не реагирует на входные импульсы, придется подобрать точнее резистор R2: его сопротивление может быть от 1,8 до 5,1 кОм.

Далее подайте на вход прибора (через конденсатор С1) переменное напряжение 3...5 В с понижающего сетевого трансформатора. Теперь стрелка микроамперметра должна отклониться на некоторый угол, соответствующий частоте 50 Гц. Подключите параллельно времязадающему конденсатору еще один такой же или большей емкости. Угол отклонения стрелки увеличится.

Точно так же можно испытать устройство на втором и третьем поддиапазонах измерения, но при входных сигналах соответствующих частот.

После этого детали частотомера можно перенести с макетной панели на монтажную плату и укрепить на ней подстроечные резисторы R5-R7 (рис. 25), а плату укрепить в корпусе, конструкция которого может быть произвольная. Конденсаторы С2 и СЗ составлены из двух конденсаторов каждый, а С4 из трех. На лицевой стенке корпуса разместите микроамперметр, переключатель поддиапазонов (например, галетный ЗПЗН или другой с двумя секциями на три положения), входные гнезда (XS1, XS2) или зажимы.

Впрочем, возможно и другое конструктивное решение: плату частотомера можно встроить в корпус блока питания и его же микроамперметр использовать при измерении частоты электрических колебаний. Шкала частотомера - общая для всех поддиапазонов измерения и практически равномерная. Поэтому надо только определить начальную и конечную границы шкалы, применительно к одному из них - к поддиапазону "20...200 Гц", после чего подогнать под нее границы частот двух других поддиапазонов измерения. В дальнейшем, при переключении прибора на поддиапазон "200...2000 Гц" результат измерений, считанный по шкале, будете умножать на 10, а при измерении в поддиапазоне "2...20 кГц" - на 100. Техника градуировки такова. Переключатель SA1 установите в положение измерения в поддиапазоне "20...200 Гц", движок подстроечного резистора R5 - в положение наибольшего сопротивления и подайте на вход частотомера от звукового генератора, например ГЗ-33, сигнал частотой 20 Гц напряжением 1,5...2 В.

Сделайте на шкале отметку, соответствующую углу отклонения стрелки микроамперметра. Затем звуковой генератор перестройте на частоту 200 Гц и подстроечным резистором R5 установите стрелку прибора на конечную отметку шкалы. После этого по сигналам звукового генератора сделайте на шкале отметки, соответствующие частотам 30, 40, 50 и т. д. до 190 Гц. Позже эти участки шкалы разделите еще на несколько частей, каждая из которых будет соответствовать численному значению частоты измеряемого сигнала.

Затем частотомер переключите на второй поддиапазон измерений, подайте на его вход сигнал частотой 2000 Гц и подстроечным резистором R6 установите стрелку микроамперметра на конечную отметку шкалы. После этого на вход прибора подайте от генератора сигнал частотой 200 Гц. При этом стрелка микроамперметра должна установиться против начальной отметки шкалы, соответствующей частоте 20 Гц первого поддиапазона. Точнее установить ее на эту исходную отметку шкалы можно заменой конденсатора СЗ или подключением параллельно ему второго конденсатора, несколько увеличивающего их общую емкость.

Аналогично подгоняйте под шкалу микроамперметра границы третьего поддиапазона измеряемых частот 2...20 кГц. Возможно, пределы измерения частоты на поддиапазонах получатся иные, или вы захотите изменить их. Делайте это подбором времязадающих конденсаторов С2-С4.

Улучшение чувствительности. А может быть вы пожелаете повысить чувствительность частотомера? В таком случае простейший частотомер придется дополнить усилителем входного сигнала, используя для этого, например, аналоговую микросхему К118УП1Г (рис.26). Эта микросхема представляет собой трехкаскадный усилитель для видеоканалов телевизионных приемников, обладающий большим коэффициентом усиления. Ее корпус с 14 выводами такой же, как у микросхемы К155ЛA3, но положительное напряжение источника питания подают на вывод 7, а отрицательное - на вывод 14. С таким усилителем чувствительность частотомера увеличится до 30...50 мВ.

Рис. 26. Усилитель, повышающий чувствительность простейшего частотомера

Колебания измеряемой частоты могут быть синусоидальными, прямоугольными, пилообразными - любыми. Через конденсатор С1 они поступают на вход (вывод 3) микросхемы DA1, усиливаются и далее через выходной вывод 10 (соединенный с выводом 9) и конденсатор СЗ подаются на вход триггера Шмитта частотомера. Конденсатор С2 устраняет внутреннюю отрицательную обратную связь, ослабляющую усилительные свойства микросхемы.

Диоды VD1, VD2 и резистор R1 (рис. 24) теперь можно удалить, а на их месте смонтировать, микросхему и дополнительные электролитические конденсаторы. Микросхему К118УП1Г можно заменить на К118УП1В или К118УП1А. Но в этом случае чувствительность частотомера несколько ухудшится.

Построенный . Он позволяет измерять частоты до 10 МГц в четырех автоматически переключаемых диапазонах. Наименьший диапазон имеет разрешение 1 Гц.

Технические характеристики частотомера

  • Диапазон 1: 9,999 кГц, разрешение 1 Гц.
  • Диапазон 2: 99,99 кГц, разрешение до 10 Гц.
  • Диапазон 3: 999.9 кГц, разрешение до 100 Гц.
  • Диапазон 4: 9999 кГц, разрешение до 1 кГц.

Описание частотомера на микроконтроллере

Микроконтроллер Attiny2313 работает от внешнего кварцевого генератора с тактовой частотой 20 МГц (это максимально допустимая частота). Точность измерения частотомера определяется точностью данного кварца. Минимальная длина полупериода измеряемого сигнала должна быть больше, чем период кварцевого генератора (это связано с ограничениями архитектуры микроконтроллера ATtiny2313). Следовательно, 50 процентов от тактовой частоты генератора составляет 10 МГц (это максимальное значение измеряемой частоты).

Установка фьюзов (в PonyProg):

Данная статья предназначена для тех, кто не хочет «заморачиваться» с МК.

Каждый радиолюбитель в процессе своей творческой деятельности сталкивается с необходимостью оборудования своей «лаборатории» необходимыми измерительными приборами.
Одним из приборов - это частотомер. У кого есть возможность, тот покупает готовый, а кто-то и собирает свою конструкцию, по своим возможностям.
Сейчас много различных конструкций, выполненных на МК, но встречаются и на цифровых микросхемах (как говорится «гугл в помощь!»).
После «ревизии» в своих закромах обнаружилось, что имеются в наличии цифровые микросхемы серий 155, 555, 1533, 176, 561, 514ИД1(2) (простая логика - ЛА, ЛЕ, ЛН, ТМ, средней сложности - ИЕ, ИР, ИД, еще 80-90 г.г. выпуска, выбрасывать их - «жаба» задавила!) на которых можно собрать не сложный приборчик, из тех компонентов, которые были под рукой в данный момент.
Захотелось просто творчества, поэтому приступил к разработке частотомера.

Рисунок 1.
Внешний вид частотомера.

Блок-схема частотомера:

Рисунок 2.
Блок-схема частотомера.

Входное устройство-формирователь.

Схему взял из журнала «Радио» 80-х годов (точно не помню, но вроде как частотомер Бирюкова). Ранее повторял её, работой был доволен. В формирователе использована К155ЛА8 (уверенно работает на частотах до 15-20 мГц). При использовании в частотомере микросхем 1533 серии (счётчики, входной формирователь) рабочая частота частотомера составляет 30-40 мГц.


Рисунок 3.
Входной формирователь и ЗГ измерительных интервалов.

Задающий генератор, формирователь измерительных интервалов.

Задающий генератор собран на часовой МС серии К176, изображён на рисунке №3 вместе с входным формирователем.
Включение МС К176ИЕ12 типовое, каких-либо отличий нет. Формируются частоты 32,768 кГц, 128 Гц, 1,024 кГц, 1 Гц. Используется в ЧС только 1 Гц. Для формирования управляющего сигнала для ВУ эта частота делится на 2 (0,5 Гц) МС К561ТМ2 (CD4013A) (используется один D-триггер).


Рисунок 4.
Сигналы интервалов.

Формирователь сигналов сброса счетчиков КР1533ИЕ2 и записи в регистры хранения К555ИР16

Собран на МС К555(155)АГ3 (два ждущих мультивибратора в одном корпусе), можно использовать и две МС К155АГ1 (смотри рис.№3).
По спаду управляющего сигнала МС АГ3 первый ж/м формирует импульс Rom - записи в регистры хранения. По спаду импульса Rom формируется вторым ж/м импульс сброса триггеров счетчиков КР1533ИЕ2 Reset.


Рисунок 5.
Сигнал сброса.

Для при измерении частоты собран блок на 2-х К555ИР16 и 4-х К555(155)ЛЕ1 (схемку нашел на просторах интернета, только немного подкорректировал под себя и имеющуюся элементарную базу).
Можно упростить частотомер и не собирать схему гашения незначащих нулей (на рисунке №9 изображена схема частотомера без схемы гашения незначащих нулей), в этом случае просто будут светиться все индикаторы, смотрите сами, как Вам лучше.
Я её собрал потому, что мне просто так приятнее смотреть на табло частотомера.


Рисунок 6. Схема гашения незначащих нулей.

Включение счетчиков КР1533ИЕ2, регистров К555ИР16, дешифраторов КР514ИД2 типовое, согласно документации.


Рисунок 7.
Схема включения счётчиков и дешифраторов.

Весь ЧС собран на 5-х платах:
1, 2 - счетчики, регистры и дешифраторы (на каждой плате по 4-е декады);
3 - блок гашения незначащих нулей;
4 - задающий генератор, формирователь измерительных интервалов, формирователь сигналов Rom и Reset;
5 - блок питания.

Размеры плат: 1 и 2 - 70х105, 3 и 4 - 43х100; 5 - 50х110.


Рисунок 8.
Подключение схемы гашения незначащих нулей в частотомере.

Блок питания. Собран на двух МС 7805. Включения типовое, как рекомендует завод-изготовитель. Для принятия решения по блоку питания были проведены замеры тока потребления ЧС, так же проверялось возможность применения ИБП и БП с ШИМ стабилизацией. Проверялись: ИБП собранный на TNY266PN (5В, 2А), БП с ШИМ на основе LM2576T-ADJ (5В, 1,5А). Общее замечания - ЧС работает не корректно, т.к. по цепи питания проходят импульсы с частотой работы драйверов (для TNY266PN около 130 кГц, для LM2576T-ADJ - 50 кГц). Применение фильтров большого изменения не выявили. Так, что остановился на обыкновенном БП - транс, диодный мост, электролиты и две МС 7805. Ток потребления всего ЧС (на индикаторах все «8») около 0,8А, когда индикаторы погашены - 0,4А.


Рисунок 9.
Схема частотомера без схемы гашения незначащих нулей.

В блоке питания использовал две МС 7805 для питания ЧС. Одна МС стабилизатора питает плату входного формирователя, блока управления дешифраторами (гашение незначащих нулей) и одной платы счетчиков-дешифраторов. Вторая МС 7805 - питает другую плату счетчиков-дешифраторов и индикаторы. Можно бп собрать и на одной 7805, но греться будет прилично, встанет проблема с отведением тепла. В ЧС можно применять МС серий 155, 555, 1533. Все зависит от возможностей….




Рисунок 10, 11, 12, 13.
Конструкция частотомера.

Возможная замена: К176ИЕ12 (MM5368) на К176ИЕ18, К176ИЕ5 (CD4033E); КР1533ИЕ2 на К155ИЕ2 (SN7490AN, SN7490AJ), К555ИЕ2 (SN74LS90); К555ИР16 (74LS295N) можно заменить на К155ИР1 (SN7495N, SN7495J) (отличаются одним выводом), или применить для хранения информации К555(155)ТМ5(7) (SN74LS77, SN74LS75); КР514ИД2 (MSD101) дешифратор для индикаторов с ОА, можно применить и КР514ИД1 (MSD047) дешифратор для индикаторов с ОК; К155ЛА8 (SN7403PC) 4 элемента 2И-НЕ с открытым коллектором - на К555ЛА8; К555АГ3 (SN74LS123) на К155АГ3 (SN74123N, SN74123J), или две К155АГ1 (SN74121); К561ТМ2 (CD4013A) на К176ТМ2 (CD4013E). К555ЛЕ1 (SN74LS02).

P.S. Можно использовать различные индикаторы с ОА, только ток потребления на один сегмент не должен превышать нагрузочной способности дешифратора по выходу.. Ограничительные резисторы зависят от типа применяемого индикатора (в моем случае 270 ом).

Ниже в архиве есть все необходимые файлы и материалы для сборки частотомера.

Удачи всем и всего наилучшего!

Схема очень простого цифрового частотомера на зарубежной элементной базе

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

В этой статье на сайте Радиолюбитель мы рассмотрим очередную простую радиолюбительскую схему частотомер . Частотомер собран на зарубежной элементной базе, которая подчас бывает доступнее отечественной. Схема проста и доступна для повторения начинающему радиолюбителю .

Схема частотомера :

Частотомер выполнен на измерительных счетчиках HFC4026BEY, микросхемах серии CD40 и семисегментных светодиодных индикаторах с общим катодом HDSP-H211H. При напряжении источника питания 12 вольт частотомер может измерять частоту от 1 Гц до 10 МГц.

Микросхема HFC4026BEY является представителем высокоскоростной КМОП логики и содержит десятичный счетчик и дешифратор для семисегментного светодиодного индикатора с общим катодом. Входные импульсы подаются на вход “С”, который имеет триггер Шмитта, что позволяет значительно упростить схему входного формирователя импульсов. Кроме того, вход счетчика “С” можно закрыть подав логическую единицу на вывод 2 микросхемы. Таким образом отпадает надобность во внешнем ключевом устройстве пропускающим импульсы на вход счетчика в период измерения. Выключить индикацию можно подав логический ноль на вывод 3. Все это упрощает схему управления частотомера.

Входной усилитель выполнен на транзисторе VT1 по схеме ключа. Он преобразует входной сигнал в импульсы произвольной формы. Прямоугольность импульсам придает триггер Шмитта, имеющийся на входе “С” микросхемы. Диоды VD1- VD4 ограничивают величину амплитуды входного сигнала. Генератор опорных сигналов выполнен на микросхеме CD4060B. В случае использования кварцевого резонатора на частоту 32768 Гц с вывода 2 микросхемы снимается частота 4 Гц, которая поступает на схему управления состоящего из десятичного счетчика D2 и двух RS триггеров на микросхеме D3. В случае использования резонатора на 16384 Гц (с китайских будильников) частоту 4 Гц нужно будет снимать не со 2 вывода микросхемы, а с 1-го.

Микросхему CD4060B можно заменить другим аналогом типа хх4060 (например NJM4060). Микросхему CD4017B можно заменить также другим аналогом типа хх4017, либо отечественной микросхемой К561 ИЕ8, К176 ИЕ8. Микросхема CD4001B прямой аналог наших микросхем К561ИЕ5, К176ИЕ5. Микросхему HFC4026BEY можно заменить ее полным аналогом CD4026, но при этом максимальная измеряемая частота будет 2 МГц. Схема входного ула частотомера примитивная, ее можно заменить каким-то более совершенным узлом.


Этот прибор имеет не только большой верхний предел измеряемой частоты, но и ряд дополнительных функций. Он измеряет уход частоты от начального значения, длительность импульсов и пауз между ними, подсчитывает число импульсов. Его можно использовать и как делитель частоты входного сигнала с задаваемым в широких пределах коэффициентом деления.

Предлагаемый частотомер содержит шесть микросхем - компаратор напряжения AD8611ARZ , синтезатор частоты LMX2316TM , D-триггер 74HC74D , селектор-мультиплексор 74HC151D , микроконтроллер PIC16F873A-1/SP и интегральный стабилизатор напряжения TL7805. Результаты измерения он выводит на символьный ЖКИ WH1602B .

Основные технические характеристики

Интервал измеряемой частоты

импульсов с уровнями ТТЛ, Гц...............0,1...8·10 7

аналоговых периодических сигналов произвольной формы напряжением более 100 мВэфф, Гц.....................1...8·10 7

синусоидальных ВЧ-сигналов напряжением более 100 мВэфф, МГц...............20...1250

Длительность счёта при измерении частоты, мс......10 4 , 10 3 , 100, 10

Интервал измеряемой длительности импульсов, мкс........10...10 6

Максимальная частота следования подсчитываемых импульсов, кГц...............100

Максимальное число подсчитанных импульсов.....100 000 000

Измеряемый уход частоты

импульсов на входе ТТЛ или сигнала на аналоговом входе, Гц..........±1...±10 6

сигнала на входе ВЧ, кГц...................±1...±10 5

Коэффициент деления частоты сигнала

поданного на аналоговый вход..............3 - 16383

поданного на вход ВЧ................1000 - 65535

Уровни выходных импульсов делителя частоты.............ТТЛ

Длительность выходных импульсов делителя частоты, мкс.......................0,5

Напряжение питания (постоянное), В...................9.16

Потребляемый ток, мА......100...150

При выключении прибора установленные режимы его работы микроконтроллер запоминает в своём EEPROM и восстанавливает при включении.

Схема частотомера изображена на рис. 1. Тактовый генератор микроконтроллера DD3 стабилизирован кварцевым резонатором ZQ1. Подстроечный конденсатор C13 позволяет установить тактовую частоту в точности равной 4 МГц. Стабилизатор напряжения +5 В собран на микросхеме DA2. Подстроечным резистором R23 регулируют яркость подсветки экрана ЖКИ HG1. Оптимальную контрастность изображения на нём устанавливают подстроечным резистором R21.

Рис. 1. Схема частотомера

Кнопками SB1-SB3 управляют прибором. Кнопка SB1 служит для выбора измеряемого параметра. Кнопкой SB2 выбирают разъём, на который подают измеряемый сигнал. В зависимости от частоты и формы входного сигнала это может быть XW1 (импульсы логических уровней частотой 0,1 Гц...80 МГц), XW2 (аналоговые сигналы произвольной формы частотой 1 Гц...80 МГц) или XW3 (сигналы частотой 20...1250 МГц). Кнопкой SB3 запускают и останавливают измерение в режимах счётчика импульсов и измерения ухода частоты. Длительным (более 1 с) нажатием на эту кнопку переходят из режимаизмерения частоты в режим её деления и вывода результата на разъём XW1. Когда кнопки не нажаты, на входах микроконтроллера, с которыми они соединены, резисторы R12-R14 поддерживают высокие уровни.

Резисторы R4 и R6 создают постоянное смещение около 100 мВ на неинвертирующем входе компаратора DA1. Резисторы R5 и R7 - цепь положительной обратной связи, нужной для получения гистерезиса в характеристике переключения компаратора. Диоды VD1 и VD2 вместе с резистором R2 образуют двухсторонний ограничитель входного напряжения на инвертирующем входе компаратора.

Микросхема DD1, основное назначение которой - работа в синтезаторах частоты диапазона 1,2 ГГц, содержит два делителя частоты с переменным коэффициентом деления, которые и используются в описываемом приборе для деления частоты входных сигналов, подаваемых на разъёмы XW2 и XW3, в заданное число раз. Микроконтроллер устанавливает коэффициенты деления и режим работы этой микросхемы, подавая команды по её последовательному интерфейсу (входы Clock, Data, LE). В зависимости от установленного режима на выход Fo/LD поступает результат работы одного из этих делителей. Резистор R19 и конденсатор C19 образуют фильтр питания микросхемы DD1, а диоды VD3 и VD4 защищают от перегрузки вход одного из её делителей частоты, непосредственно связанный с разъёмом XW3. На триггере DD4.1 собран одновибратор, формирующий из выходных сигналов делителей частоты импульсы длительностью 0,5 мкс. Его времязадающая цепь - резистор R17 и конденсатор C10.

Формирователь импульсов, подаваемых на разъём XW1, собран на транзисторе VT1 с коллекторной нагрузкой - резистором R8. Он работает, когда на выходе RC5 микроконтроллера установлен высокий логический уровень. В противном случае формирователь выключен и не оказывает влияния на подаваемые на разъём XW1 внешние сигналы. Поэтому разъём XW1 может быть как входным при измерении частоты и длительности логических сигналов, а также при счёте импульсов, так и выходным в режимах деления частоты. Резистор R11 служит для защиты входа 0 селектора-мультиплексора DD2 от случайно поданных на разъём XW1 сигналов большой амплитуды.

Селектор-мультиплексор по командам микроконтроллера подаёт на его предназначенные для измерения частоты и длительности импульсов входы либо импульсы уровней ТТЛ с разъёма XW1, либо сигналы, поступившие на разъём XW2 и преобразованные в такие импульсы компаратором DA1, либо сигналы, поступившие на разъём XW3 и прошедшие через делитель частоты микросхемы DD1. Микроконтроллер выполняет основные операции измерения частоты, длительности и счёта импульсов. Он же выводит результаты измерений на ЖКИ HG1 и управляет работой всего прибора. Программа микро-контроллера написана на языке ассемблера MASM, входящего в состав среды разработки программ MPLAB IDEv7.5.

В режимах измерения частоты микроконтроллер подсчитывает импульсы, поступившие на вход T0CKI в течение выбранного пользователем измерительного интервала (0,01, 0,1, 1 или 10 с). При измерении частоты сигнала, поданного на разъём XW3, его частоту предварительно делит на 1000 один из делителей микросхемы DD1.

При измерении длительности импульсов высокого логического уровня микроконтроллер по нарастающему перепаду измеряемого импульса на входе INT начинает счёт импульсов частотой 1 МГц, полученных делением своей тактовой частоты. Он прекращает этот счёт по спадающему перепаду измеряемого импульса. В случае измерения длительности импульса низкого уровня счёт начинается по его спадающему перепаду, а завершается по нарастающему.

Как только включён режим измерения ухода частоты, микроконтроллер выполняет первое измерение частоты входного сигнала, затем периодически повторяет эти измерения. Программа вычитает результат первого измерения из каждого последующего и выводит текущую разность на индикатор. После остановки этого режима на ЖКИ отображаются максимальные зафиксированные завремя измерения отклонения частоты вниз и вверх от начальной.

Для измерения частоты следования логических импульсов с уровнями ТТЛ кнопкой SB2 выбирают входной разъём XW1. Микроконтроллер формирует на выходах RC0-RC2 код 000, переводя этим селектор DD2 в состояние, при котором сигнал с разъёма XW1 поступает на входТОСК1 микроконтроллера для измерения частоты и на его же вход INT для измерения длительности импульсов. Результаты измерений программа выводит на ЖКИ HG1 (рис. 2), причём длительности импульсов высокого (H) и низкого (L) уровней на экране чередуются. Код в правой части верхней строки означает заданное время счёта: "10" - 10 с, "1" - 1 с, ",1" - 0,1 с и ",01" - 0,01 с. В правой части нижней строки выводится условное обозначение выбранного входного разъёма: TTL - XW1, VHF - XW2, UHF - XW3.

Рис. 2. Результаты измерений, выводимые программой на ЖКИ HG1

Измеряя частоту аналоговых сигналов (до 80 МГц), кнопкой SB2 выбирают входXW2. На выходах RC0-RC2 микроконтроллер формирует код 001, переводя мультиплексор DD2 в положение, в котором сигнал с разъёма XW2, преобразованный в прямоугольные импульсы компаратором DA1, поступает на вход TOCKI микроконтроллера. Программа измеряет частоту сигнала и выводит результат на ЖКИ (рис. 3).

Рис. 3. Результаты измерений, выводимые программой на ЖКИ HG1

Для измерения ВЧ-сигналов частотой до 1250 МГц кнопкой SB2 выбирают входной разъём XW3. С него сигнал поступает на вход f IN имеющегося в микросхеме DD1 делителя частоты. Коэффициент деления задан микроконтроллером равным 1000. Сигнал с выхода делителя частоты, преобразованный в импульсы длительностью около 0,5 мкс одновибратором на триггере DD4.1, поступает через мультиплексор DD2 на вход TOCKI микроконтроллера. Мультиплексор установлен в нужное для этого состояние кодом 010 на выходах RC0-RC2 микроконтроллера. Программа микроконтроллера измеряет частоту и с учётом коэффициента деления выводит результат на ЖКИ (рис. 4).

Рис. 4. Результаты измерений, выводимые программой на ЖКИ HG1

Подлежащие счёту импульсы подают на входной разъём XW1 или XW2. Кнопкой SB2 выбирают один из этих входов, а кнопкой SB1 - режим COUNTER (рис. 5). Счёт запускают нажатием на кнопку SB3, что сопровождается заменой на экране метки OFF (выключено) меткой ON (включено). Для остановки счёта на кнопку SB3 нажимают повторно, при этом метку ON сменяет метка OFF. Накопленное за время от запуска до остановки число импульсов программа показывает на ЖКИ.

Рис. 5. Результаты измерений, выводимые программой на ЖКИ HG1

Чтобы измерить уход частоты, сигнал (в зависимости от его формы и частоты) подают на один из входных разъёмов XW1-XW3, выбирают кнопкой SB2 этот разъём, а кнопкой SB1 - функцию "+/-FREQUENCV (её название сопровождается меткой OFF). Измерение запускают нажатием на кнопку SB3, при этом метку OFF сменяет метка ON. Прибор измеряет уход частоты и выводит его текущее значение на ЖКИ (рис. 6). После повторного нажатия на кнопку SB3, останавливающего измерение, на ЖКИ появляются максимальные зафиксированные за время измерения значения ухода частоты вверх и вниз от исходной (рис. 7).

Рис. 6. Результаты измерений, выводимые программой на ЖКИ HG1

Рис. 7. Результаты измерений, выводимые программой на ЖКИ HG1

Для деления частоты аналогового сигнала частотой до 80 МГц кнопкой SB2 выбирают входной разъём XW2 и подают на него сигнал, частота которого подлежит делению. С выхода компаратора DA1 он поступает на вход OSCIN делителя частоты R_Counter микросхемы DD1. Микроконтроллер задаёт по последовательному интерфейсу необходимый коэффициент деления этого делителя и подключает его выход к выходу Fo/LD микросхемы. Нажатиями на кнопку SB1 коэффициент деления уменьшают, а на кнопку SB2 - увеличивают. Чем дольше удерживают кнопку нажатой, тем быстрее изменяется коэффициент.

На выходе RC5 микроконтроллер устанавливает высокий уровень, переключая разъём XW1 в режим выхода. На своих выходах RC0-RC2 микроконтроллер формирует код 000, поэтому сигнал, выведенный на разъём, поступает и на входТ0СКI микроконтроллера для измерения частоты. Длительность импульсов в этом режиме не измеряется.

Рис. 8. Результаты измерений, выводимые программой на ЖКИ HG1

На рис. 8 показан результат деления частоты 19,706 МГц поданного на разъём XW2 сигнала на 100. В этом случае на выходе XW1 с частотой 197,06 кГц следуют импульсы высокого логического уровня длительностью 0,5 мкс. Сигналы частотой от 50 до 1200 МГц подают для деления на разъём XW3. Они обрабатываются аналогично, отличие лишь в том, что в операции участвует более высокочастотный делитель частоты N-Counter микросхемы DD1. На рис. 9 показан результат деления частоты 200,26 МГц на 2000. Частота на выходе - 100,13 кГц.

Рис. 9. Результаты измерений, выводимые программой на ЖКИ HG1

Частотомер смонтирован на печатной плате из фольгированного с двух сторон стеклотекстолита толщиной 1 мм. Её чертёж показан на рис. 10, а размещение элементов - на рис. 11. Постоянные резисторы и большинство конденсаторов имеют типоразмер 0805 для поверхностного монтажа. Подстроечные резисторы R21 и R23 - SH-655MCL, подстроечный конденсатор C13 - TZC3P300A110R00. Оксидные конденсаторы С4 и C6 - алюминиевые с проволочными выводами.

Рис. 10. Печатная плата частотомера

Рис. 11. Размещение элементов на плате

Разъёмы XW1-XW3 - 24_BNC-50-2-20/133_N . Они соединены с платой отрезками коаксиального кабеля с волновым сопротивлением 50 Ом длиной около 100 мм. Кнопки SB1-SB3 - TS-A3PG-130. Индикатор HG1 укреплён над платой на стойках высотой 10 мм винтами М3.

Прибор собран в пластмассовом корпусе Z-28 . На его передней панели вырезано прямоугольное отверстие размерами 70x25 мм для экрана ЖКИ и просверлены три отверстия диаметром 3 мм под кнопки. Сами кнопки установлены на стеклотекстолитовой плате размерами 100x12x1,5 мм, прикреплённой к передней панели с обратной стороны винтами M3. С левой стороны корпуса установлено гнездо питания, а с правой - его выключатель. Входные байонетные разъёмы размещены на задней стенке корпуса.

Налаживание частотомера заключается в следующем:

Установите подстроечным резистором R21 оптимальную контрастность изображения на экране ЖКИ;

Установите подстроечным резистором R23 необходимую яркость подсветки ЖКИ;

Установите подстроечным конденсатором C13 тактовую частоту микроконтроллера в точности равной 4 МГц. Для этого к разъёму XW1 подключите цифровой частотомер (Ч3-63 или любой другой), включите налаживаемый прибор при нажатой кнопке SB3 (при этом на ЖКИ должна появиться надпись "TEST") и, вращая ротор подстроечного конденсатора C13, добейтесь показаний внешнего частотомера, максимально близких к 100000 Гц. Не забывайте, что погрешность установки этой частоты непосредственным образом влияет на погрешность налаживаемого прибора.

Литература

1. Ultrafast, 4 ns Single-Supply Comparators AD8611/AD8612. - URL: http://www.analog. com/media/en/technical-documentation/ data-sheets/AD8611_8612.pdf (02.11.2015).

2. PLLatinum™ LowPower Frequency Synthesizer for RF Personal Communications LMX2306 550 MHz, LMX2316 1.2 GHz, LMX2326 2.8 GHz. - URL: http://www.ti.com/lit/ds/ symlink/lmx2326.pdf (02.11.2015).

3. 74HC74, 74HCT74 Dual D-type flip-flop with set and reset; positive edge-trigger. - URL: http://www.nxp.com/documents/data_sheet/ 74HC_HCT74.pdf (02.11.2015).

4. 74HC151, 74HCT151 8-input multiplexer. - URL: http://www.nxp.com/documents/data_ sheet/74HC_HCT151.pdf (02.11.2015).

5. PIC16F87XA Data Sheet 28/40/44-Pin Enhanced Flash Microcontrollers. - URL: http://akizukidenshi.com/download/PIC16F 87XA.pdf (02.11.2015).

6. WH1602B character 16x2. - URL: http:// www.winstar.com.tw/download.php?ProID= 22 (17.11.15).

7. Coaxial Cable Connector: 24_BNC-50-2-20/133_N. - URL: http://www.electroncom. ru/pdf/hs/bnc/24bnc50-2-20_133n.pdf (16.11.15).

8. Корпус Z-28. - URL: http://files.rct.ru/ pdf/kradex/z-28.pdf (16.11.15).

Чертёж печатной платы в формате Sprint Layout 5.0 и программу микроконтроллера можно скачать .


Дата публикации: 16.02.2016

Мнения читателей
  • Владимир / 20.01.2017 - 10:55
    Вышли еще две версии частотомера. Третья версия опубликована в журнале "Радиолюбитель" №8,9. Четвертая: https://cloud.mail.ru/public/4EKo/QaTMuiDMv